BLOCKCHAIN COMMONS THE NEXT STEP IN DIGITAL CREDENTIALS

DIGITAL CREDENTIALS ARE A BETTER WAY OF SHARING QUALIFICATIONS They Simplify Administration Create a credential. Sign it. Put Public Keys in a PKI. You're done!

FUFIYI ÆPRÆIT

֎֍ՠ֎ՠՠՠՠ֎ՠ֎ՠ֎

Cceeliteecis

1010 001000 01010

- OVINDO A & DOOUNOOU

a como

VUCOU

DECELIA A CETACELLAN

SINDE ODVIO

acked Stordkore

0000 (VUINT BOODONDON' DIONGU WUD D MD200011 DUDINGGODONO (VD0000'N ON. 250000111 DUDINGO 000 000 000 000 000 002 NO DODODON

@Den446 a Di 1000 ເກກາ ເອັດ ແບບການ 000 ອາການ ອາກາ

ID) VOIUC

DIGITAL CREDENTIALS ARE A BETTER WAY OF SHARING QUALIFICATIONS

They Simplify Usage

Student can retrieve at will.

 It is not necessary for institutions to verify.
 (The signature does that.)

"No phone home"

stel

wonnon wonnon

store 63

Sanwin no aluanda an

GUROOM.

OC minuto an in Uno

SOLCAUS SOLOS ROMEYXA

CONCOLOR STATE DANDOROD

משעירוש מאעזוטת ומנשייות השיות

ISICDATNA

AOOJ LOOM

WORCES CO

Constant COllision Constant Co

DIGITAL CREDENTIALS CAN BE DANGEROUS TOO!

- How do you protect student's privacy?
- How do you protect against discrimination?

How do institutions reduce liability, especially with new laws such as GDPR, CCPA, and more to come?

DIGITAL CREDENTIAL PROBLEMS

- The biggest problem is identity theft.
- Credentials can contain huge amounts of info!
- Names, addresses, birthdays, ID #s.
- These are used as identity questions!
- But specific data can cause problems too!

DIGITAL DATA PROBLEMS

- **Gender:** gender discrimination
 - Especially problematic for students from vulnerable countries & transgender students in US.
- Name, Birthplace, Address, Issuer location: racial discrimination
- Age, date of credentialing: age discrimination
- Faith-based school info: religious discrimination
- The more data, the more problems!

CREATING A SOLUTION: HOLDER-BASED ELSION

HOLDER-BASED ELISION

- Data-filled credentials shouldn't be out in wild.
- Let the holder redact information as they see fit.
- Potentially discriminatory items can be removed.
- Unnecessary information can be removed.
- But holder still has the full credential when needed. (Signatures still verify!)
- Question of data retention/deletion becomes one for holder – not institute.

IMPLEMENTING THE SOLUTION: HASH-BASED ELISION

WHAT IS A HASH?

- Like a "data fingerprint".
- The smallest change to the data entirely changes the hash.
- They are a fixed size, no matter the size of the input data.
- Hashes are one-way: you can't recover the original data from the hash.
- They are a long series of numbers, but can be made visual and easily distinguishable with tools like LifeHash.

Input: Hello, world!

Hash:

315f5bdb76d078c4 3b8ac0064e4a0164 612b1fce77c86934 5bfc94c75894edd3

Input: Hello, Wörld!

Hash:

fc759582a2659fd4 a5b4a69be4ada5b2 bb6050c91d9e646b 0b1184abca26bd82

HASH-BASED ELISION

- If you sign a document then remove the data, you can no longer verify the signature.
- How do we allow the holder to remove data without invaliding signatures?
- Solution: don't sign the data: hash the data and then sign the *hash!*
- When the data is removed, the hash remains in the document.
- If the data is restored, verify that its hash matches the hash in the document.

Input:

Hash:

315f5bdb76d078c4 3b8ac0064e4a0164 612b1fce77c86934 5bfc94c75894edd3

WHAT IS A TREE OF HASHES?

- Data can be arranged into a tree.
- > All similar date is kept in the same "branch".
- For a credential, all of a student's Personally Identifiable Information might be in one branch, all of their qualifications in another.
- The organization continues down from there. This makes it easy to elide specific types of info.
- The hash tree then matches the structure of the data: each bit of data has its own hash and those hashes combine as data comes together into branches and into the final tree (producing a "root" hash for everything!).
- Mature technology (Merkle Tree invented 1979)

HASH-BASED ELISION

If the document is a tree of hashes, then any tiny change anywhere in the tree changes the hashes all the way up to the root, invalidating any signatures.

HASH-BASED ELISION

If the document is a tree of hashes, then any branch can be removed while still verifying all the higher-level signatures.

REMOVES THIS DATA

DATA MINIMIZATION: **A CORNERSTONE OF PRIVACY**

The basic rule: reveal what is needed, no more!

Requires system of selective disclosure.

Holder-based, hash-based elision lets students make all the decisions.

DATA MINIMIZATION: WHY DO WE CARE?

- We want meaningful credentials BUT ...
- > We want to protect students & their future.
- We want to protect vulnerable populations.
 - Students are particularly vulnerable!
 - Young, away from home & support systems.
- We value diversity & want to protect it.

DATA MINIMIZATION: HOW IT HELPS INSTITUTIONS

- They don't have admin of eliding credentials.
- They don't have liability of overfull credentials.
- They don't have responsibility for GDPR, et al.
- Responsibility is transferred to holder.

DATA MINIMIZATION: **INSTITUTIONAL COMPLIANCE**

- Elision can protect institutions from violating laws!
 - **FERPA:** Prohibits transmitting student PII in US, with wide exceptions.
 - > PPRA: Defines protected data areas (e.g., religion, income, etc.) that could be compromised in credentials.
 - **GDPR:** European law with stringent rules about data collection & distribution.
 - **CCPA:** Californian equivalent of GDPR, with some variations.
- It's a lot! Data minimization can provide compliance for multiple rules & regulations.

THERE'S MORE.

PROOF OF INCLUSION

HASH AND SIGNATURE MADE PUBLIC

The institution can publish just a signed root hash with no other information.

Later they can prove certain information exists in the document by providing just the necessary hashes.

HERD PRIVACY

SIGNED CREDENTIALS

The institution can give each student their credential, and publish a tree of elided hashes, one for each credential in the cohort.

Provides proof that the student graduated with their cohort.

HASH-BASED ELISION WITH GORDIAN ENVELOPE

GORDIAN ENVELOPE

"Alice" ["knows": "Bob"

NODE

"Alice"

ASSERTION

"knows"

"Bob"

GORDIAN ENVELOPE

ELIDED ["knows": "Bob"

1 – SUBJECT ELIDED

NODE

ASSERTION

"Bob"

GORDIAN ENVELOPE

"Alice" [ELIDED: "Bob"

2 - PREDICATE ELIDED

NODE

"Alice"

ASSERTION

"Bob"

GORDIAN ENVELOPE

"Alice" ["knows": ELIDED]

3 – OBJECT ELIDED

NODE

"Alice"

ASSERTION

"knows"

GORDIAN ENVELOPE

"Alice" [ELIDED]

4 - ASSERTION ELIDED

NODE

"Alice"

GORDIAN ENVELOPE

5 – ENVELOPE ELIDED

EMERGING ELISION SPECS

S	Cons
/T ecosystem, DDL/mDOC; ire schemas	Hash lists not tree (only elide whole cla from a list); other JWT limitations
J-LD ecosystem; oh data	Hash lists not tree (only elide whole claims from a list); requires node graph structure & schen
tic (graphs + lists + a); offers 5-kinds of roofs, herd privacy, sion, secret sharing	Not W3C-VC centric (useful for many other purposes including DIDs and oth data); not currently accepted on standards track
tion of signatures, knowledge of the signature	Not hash-based, uses new cryptograp (2006); holder-based elision scenario more complicated

FINAL NOTES

- Digital credentials are powerful.
- But simple credentials don't protect privacy.
 - Holder & issuer both at risk!
 - Transient, can be lost, too much info!
- Strong, safe credentials NEED ...
 - Control by holder.
 - Ability to elide.
 - Maintenance of signatures through hashing.
 - Proofs for further data minimization.

A CALL TO ACTION

- Holder-based elision is crucial for privacy.
- We need to turn MAYS & SHOULDS into MUST.
 - Data Minimization as a REQUIREMENT.
 - ► User Control as a REQUIREMENT.
- We'd like you to use Gordian Envelope
 - Useful features such as encryption, inclusion proofs & herd privacy, etc.
- But if not, please use another emerging spec!

FOR MORE ON GORDIAN

- Read Gordian Envelopes intro:
- https://tinyurl.com/gordian-envelope

- Read Educational use cases:
- https://tinyurl.com/gordian-educational

CHRISTOPHER ALLEN christophera@lifewithalacrity.com @BlockchainComns

WOLF MCNALLY wolf@wolfmcnally.com @WolfMcNally

